Composite Gauss-Legendre Formulas for Solving Fuzzy Integration

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Gauss Legendre quadrature formulas for composite numerical integration over a triangular surface

This paper first presents a Gauss Legendre quadrature method for numerical integration of I 1⁄4 R R T f ðx; yÞdxdy, where f(x,y) is an analytic function in x, y and T is the standard triangular surface: {(x,y)j0 6 x, y 6 1, x + y 6 1} in the Cartesian two dimensional (x,y) space. We then use a transformation x = x(n,g), y = y(n,g) to change the integral I to an equivalent integral R R S f ðxðn;...

متن کامل

Gauss-Legendre principal value integration

few problems lend themselves to closed-form solution, we often need to convert formal definitions into practical numerical methods. One such problem deals with the Principal Value integral, which many students encounter in a course on functions of a complex variable. However, the prospect of evaluating one numerically might seem rather daunting. To the best of my knowledge, the subject remains ...

متن کامل

Error of the Newton-Cotes and Gauss-Legendre Quadrature Formulas

Abstract. It was shown by P. J. Davis that the Newton-Cotes quadrature formula is convergent if the integrand is an analytic function that is regular in a sufficiently large region of the complex plane containing the interval of integration. In the present paper, a bound on the error of the Newton-Cotes quadrature formula for analytic functions is derived. Also the bounds on the Legendre polyno...

متن کامل

A New Modification of Legendre-Gauss Collocation Method for Solving a Class of Fractional Optimal Control Problems

In this paper, the optimal conditions for fractional optimal control problems (FOCPs) were derived in which the fractional differential operators defined in terms of Caputo sense and reduces this problem to a system of fractional differential equations (FDEs) that is called twopoint boundary value (TPBV) problem. An approximate solution of this problem is constructed by using the Legendre-Gauss...

متن کامل

Gauss-Sidel and Successive Over Relaxation Iterative Methods for Solving System of Fuzzy Sylvester Equations

In this paper, we present Gauss-Sidel and successive over relaxation (SOR) iterative methods for finding the approximate solution system of fuzzy Sylvester equations (SFSE), AX + XB = C, where A and B are two m*m crisp matrices, C is an m*m fuzzy matrix and X is an m*m unknown matrix. Finally, the proposed iterative methods are illustrated by solving one example.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2014

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2014/873498